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ABSTRACT

Calculation of transient torsional vibration indutdoy ice block impacts on the propeller blades &datory
since January 2011 when new Classification Soadtieles for the ships navigating in ice came iotod. The
calculation complexity of shaft torsional vibratiam this case consists not only in inevitable tiduenain ap-
proach application but mostly in simulation of dyma propulsion system response as a whole, takit@ydc-
count shafting speed drop during impacts, diesgirengovernor and turbocharger reaction for diesegine
installations. Calculation time for the real propgidn trains grows considerably. As a way out Cliésstion
Societies strongly advice to reduce actual masstielaystems to several mass using special tecénifjois
paper is concerned with an effective method focwdation of transient torsional vibration of the gpulsion
system induced by ice block impacts that does egtuire mass-elastic system simplification. Spetirae-
domain integration of the linear matrix equationspsopulsion shafting transient torsional vibratios pro-
posed. Calculation module based on this technigsebteen implemented in ShaftDesigner CAE package.

INTRODUCTION The time-domain approach for torsional vibration
calculation of real propulsion trains is time comsu
Propeller of a ship navigating in ice is continyall ing considerably. As a way out the Classificatian S
subjected to ice impacts that, among other prohlemscieties, for example DNV [1], recommend to simplify
results in a severe shafting vibration. However thethe conventional mass-elastic systems, used iredorc
international economy and exploitation of natural torsional vibration calculations, to several mé&se-
resources of Northern areas requires elongating o€ial technique is to be applied for simplificatioh
shipping period in Baltic Sea and in Arctic region. the mass-elastic system. This technique is noiatriv
That is the reason why numerous investigation pro-and requires some experience from the user and
jects were undertaken in the Northern countries lasmoreover it not be easily applied in the case af-no
decades. As a result of long-term efforts of indern linear elements.
tional research group new Rules for the ships navi-
gating in ice came into force in January 2011. The nature of propeller and ice block interactien r
quires simulating of the propulsion system dynamic
Among other requirements the updated Rules for theesponse as a whole, taking into account shafting
ice and polar class ships require calculation afigi-  speed drop, governor and turbocharger reaction for
ent torsional vibration, caused by ice impactsimn t diesel engine installations.
propeller blades.
This paper is concerned with formulation of govern-
Conventional propulsion shafting forced torsional ing equations of propulsion shafting transientitors
vibration calculations (TVC) have no computational al vibration caused by ice impacts on the propeller
problems because owing to the harmonic excitatiorblades and development of an effective method for
law the frequency-domain approach can be easiljthe time-domain integration of the equations that
used. gives the possibility to avoid the procedure of sas
elastic system simplification and takes into act¢oun
In the transient vibration calculation time-domain propulsion system response during ice milling pro-
approach should be used because of the arbitrary exess.
citation law.



1. GOVERNING EQUATIONS

Typical directly driven propulsion system equipped
with controllable pitch propeller (CPP) (Fig. 1)nco
sists of:

diesel engine;

propulsion shafting;

CPP;

oil distribution box, (ODB);

speed governor;

exhaust gas receiver;

turbocharger;

combustion air receiver;

load governor;

engine control system.
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Fig. 1. Propulsion system principal scheme

Mechanical part of the propulsion system in toralon
vibration calculation (TVC) is to be modeled as a
commonly knownN-degree mass-elastic system: the

system consisting of lumped masses having specific

inertia, connected by the massless stiffness eltsnen

Motion of the lumped mask of the systemis de-
scribed by the equation [2]:

d

b @

[(J +03,(0) ] > M,

where ¢, — angular veloci-
ty; J, — constant part of the lumped mass inertia;

— rotation angleg, =¢,

AJ, (¢)— variable part of the lumped mass inertia;
sz — sum of the torques, applied to the lumped
mass.

According to [2] equation (1) can be rewritten as:

v, -0

£ (3, +AJ (9))=

The variable inertia componenaJ, (6) inherited
mainly to the cylinder lumped mass and the CPP

lumped mass. These arise due to the piston and
conrod center-of-mass positions changing with re-
spect to the crankshaft axis and due to changing of
propeller added inertia during pitch adjusting. See
articles [3,4], [5] for appropriate calculation foulas.

Seven categories of the torques contribute to the
sumy” M,

MY, M],M .- weight, inertia and gas excita-
tion torques are applied to the cylinder

lumped masses;
M M, - hydrodynamic excitation and ice

impact torques are applied to the propeller
lumped mass;

— Mp- absolute damping torque is applied
mainly to the cylinder and propeller lumped
masses;

M- elastic torque produced by the stiffness
elements is applied to all lumped masses.

TVC for open water operation condition when no ice
torque is applied usually performed in a frequency
domain as steady-state oscillations because sitaft r
tion speed assumed to be constant as well as she re
propulsion system parameters. Mean torque devel-
oped by the engine is in equilibrium with the mean
hydrodynamic torque, applied to the propeller.
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Fig. 2: Ice torque graphs for 4-blades propeller

In ice conditions the torques balance is disturbgd
ice impacts. The ice impact torun; in the Clas-
sification Rules are described as the sequences of

half-sinus waves of blade passing frequency as well
as the double frequency. Ice torque graphs for 4-



blades propeller at the constant propeller speed ar 1 if n<n, -A,
shown in the Fig 2.

Up =95 if n,>n>n -4, 9)
Torque amplitud€).x depends on ship class, propel-
ler and hub diameters and propeller speed.

In the case of ice impacts propeller load changes a where A— speed control rangey, — target speed:
ruptly that initiate variation of propulsion systgra-

rameters. First of all shaft actual spelrddrops and

the speed governor increases the components of the n, for P governor

fuel supply vectorb sequentially to maintain required n, = (10)

speed. Where, in spite of maximum fuel supply, the
required speed, is not reached, load governor de-

creases the propeller pitch to decrease ship speed
use the engine energy to overcame ice resistance.
As a result of the fuel supply alteration exhaisdeas
parameters will alter the combustion air parametersGovernor PID algorithm is not effective for low
In total these changes will alter indicating pressu SPeed installations and does not used here.
diagram and gas toque component at the cylinder

lumped masses [6]:

1 t
n, +—J(nz - n)ce for Pl governor,
T

i 0

n,— required engine speed.

2. NUMERICAL TECHNIQUE
_ ; Sine, —e,)
M? = P(oy, P, T, b) OF Y sirkm “, ©) The choice of the numerical technique for the time-
k

domain solution of thé&+5 differential equations de-
where P(o,, P, T, b)— cylinder pressure;p;— air scribed a}bove is a k_ey factor for the successftubpr
lem solving. According to the fundamental publica-
tion [7] the majority of the numerical algorithmsagn
be collected into the three familiesnultistage tech-
niques multistep techniquesnd optimization tech-
niques

receiverpressure;r_— air receiver temperaturdy, —
fuel supply vector component in cylinderF — cyl-
inder areay — crank radiusp., — conrod angle

For the propulsion shafting transient torsionalraib

tion calculation induced by ice impacts the conven-
tional TVC differential equation system must be ex-
panded with the differential equations for turbo-
charger rotor (4), turbine receiver (5)-(7) and eom ) ]
pressor receiver (8): for every temporal point, ., has to be carried out to

achieve required accuracy.

The disadvantage of the multistage techniques
(Runge-Cutta method, Newmaikmethod) is that
some amount of the additional iterative calculagion

A B =fe (PP T Lm0, “ The well-known family of the “predictor-corrector”
ma =f,(R,B.T.L.m.p.nb, 5 algorithms (Adams-Multon method) belongs to the
. . - X multistep techniques. The disadvantage of the multi
L &, =f R.R.T.L.m.p.nb), (6 step techniques is that the algorithms could staly

G, =f (B,B,T,L.m.n,nb), % from some temporal point,,,, s >1 but not from the
m, &, =f.,(F,m,n, N, 8 initial pointty, therefore some other algorithm has to

be used at the beginning for the calculations a@n th

where n,_ — turbocharger rotor speedim_— mass of . .. .
e g peedim, initial interval [t;tg] .

gas in turbine receiverl, — gas amount in turbine
receiver in molesT , P, — turbine receiver inhibited _ _ S _ _
flow temperature and pressume, — mass of air in The third family of the optimization techniques is

compressor receiver;t, T,— time constants of based on the optimization procedures applied to the

compressor and turbine receivers; specified functionalJ(é,é,@), connected to the con-
f. foe fL fr f— the right-hand sides functions of

thé equations [6]. sidered problem. If p,} are the set of free unknown

parameters in the solution, then the conditions

Suitable fuel supplyb, depends on the normalized aJ/a P, =0 generate the resulting equations in the

algorithm. Different versions of the well-known $ta
) square algorithms are the good representativelsiof t
governor algorithm: family [9]. One of them is Kujawski&Gallager meth-

torque valuep, =>'m/; /M, defined by the speed



od [10], according to which the minimization proce- é(t) (2) - L(Z)é L( 2)é L(Z)é
= = = + +

dure is formulated a8J/98,,, =0 where functional 4 KAk Tk Tk Tl ke ]

J has to be considered as a square of the totalserroypere 12 =4+ 1 (111) and I_(k2) - (1—r2) are the

. . ka1 =E 2T
of equations for the temporal interygly;t,.,,] - Lagrangian polynomials of the second order for lloca

. . .. temporal coordinate t=(t-t,)/AtO[-1+ and
To solve the problem of transient torsional vitwati P B ( ")/ [ ]]
problem the Kujawski&Gallager algorithm was spe- O, = e(tk) are the nodal values of the solution. The

cially generalized [11] to be applied to the comple o536 nolynomial approximation must be applied for

mechanical form of the governing equations with o - @) -
nonlinearities in matrix elements: the vector of excitation forces(t) = (™' [T) in the

right-hand side of the equations.

M8+ CB+KB =T(1), (11)
6 e
where matricesM,C,K are considered as the equiva-
lent inertia, damping and rigidity matrices of thie o
) . = ] approximation
bration system respectively ant(t) is a vector of
generalized excitation forces. For the transierd an Oy Oent
nonlinear problems some elements of the above men- t
tioned matrices would include dependences of the k-1 Kk kit
matrix elements on time, displacement vedorand R TR

velocity vecto®. In this case loading vector may _. o .
Fig. 3: Approximation of the solution on the temporal

have the same structure (1, 6,6) y interval [t, _;;t, ;] | — known portion of the solution,
The mechanical form of the equation makes the 9eN5, _ L nknown bortion of the solution
eralised Kujawski&Gallager method most suitable for P '
use together with the finite element method of pro-

pulsion shafting modelling [8] ApprOX|mat|0n generates some errors in the solution

or so called “residual forces” in the matrix eqoas

To evaluate the above mentioned techniques four(ll_) . (9 (2 (=
typical algorithms — fourth-order Runge-Cutta algo- D(t)={M(|—[ @)’“C(L[ 9)+K(L[ 9)‘('—[ T)} #0
rithm, four-step Adams-Multon algorithm, Newmark Then at the second stage of the algorithm [8,tH,

p-method and generalized  version of functional related to the problem can be formulated
Kujawski&Gallager algorithm have been chosen 1o the following:

solve the following differential equations:

1) linear dumping oscillator, +1

2) nonlinear Duffing’s oscillator and Jr=1 W(r) DI (r) ﬁc(r) dr, (14)
3) Van-der-Pol's oscillator with nonlinear damping. -1

Calculations were carried both for free oscillafon

and for harmonically exited oscillations. whereW(T) is some weighting function on the con-

i i sidered temporal interval having the properties
Calculation results brought us to the following €on

1
clusion: every of chosen algorithm works correctly -3W (T) dr =1, W(‘T) = W(T), V\(T) >0 and
for some of the equgtipns and indicates amp"tUdeic(t):{MC(I'_(‘Z)(:))+CC(L(‘Z)\M:))+KC(L(f)\ﬂé)—(L(f)wT)}
instability or phase shifting for the rest of thgua- . ] )
tions. Generalized Kujawski&Gallager optimization is the vector of residual forces. This vector ines
algorithm in general showed better characteristics additional weighting factorsv = diag(a_l;ao;l) and

the comparison to other algorithms. estimating of the matrixes,C,K in some specified

Hereinafter generalized Kujawski&Gallager algo- point of collocationt =t O[t,_;;t,,,] (in the case of
rithm [8,11] is discussed in more details. nonlinear or time-depending elements of matrixes in

At the initial stage of the algorithm, for the ctar#t the equations). Weighting functlm(t), point_ of

temporal stepAt = const the second-order polynomi- collocation t, and weighting factorsv have to be

al approximation of the solution is applied on the chosen on the next stages of the algorithm.
temporal intervalt, ;;t,.,] (see Fig. 3):



At the third stage, the algorithm conside®g_;, ©, the first temporal point; and stability conditions at

as known values; for the unknown val@,,, we the infinityt, - «. Application of these conditions
would formulate minimization procedure as the fol- generates finally the following results for the

lowing: weighting factorsk;, j=1,2,3,4 [11]: relations be-
tween the factors
g
— =0, (15)
0044 1 1
* k1=7K' k3:7(K_(1+X0)); (19)
which finally results in the numerical algorithm: k, =k(1+ Xl) +k, —2—14(1+x2) ,
Ops1= ZA_lBém‘(' - ZA_lD)ék+1+ (16) accuracy and stability conditions for two free nmi
o =1 /= - et i factorsk, k
wo®[ AT (T + ) -2 A 6T+ W) |, g
5
wherek =1,2,3,... and for the first temporal poing 12K (1+X3) 4 (1+X0) (1+X4) =0
it modifies to the equation: 1+ 2(K %) Ay, +[k + K :IAQ; + (20)
1 1
_ . +| ky+5| K- K — Amk >0,
&, =(A-D) 1[560 +At(A—2D)'eo+(l ET - G‘Bﬂ (17) [ 4 4( ﬂ)]( TZ)
2
where X )= ,4 are some correction factors re-

where 8,6, are the initial values of the problem |ated 1o the damplng effects in the model problewxh a

solution. Amk = At (wo -V ) .

The following expressions for the matrices A, B, D,
E, G, H are used:

A:{MI MC+AtMICC+A12kl(MTCK KM o+ 2cTCc()+
+%At3k1(KICC+ZCIK C) +At4k2KTCK} ,

B:{ IMC+A12(k3MIKC+k1K-£M c+2klcTCct)+ (18)
+At4k4KIKC} :

T 1,3 (T T
D—{AtMcCc+vat kl(chC+2/\CcC)} ,

E ={k1MI +DMKCL +A12k2KI} : G:{ I%]\/II+AIZKZQ<I} :
H ={ancl}.

The algorithm includes four unknown weighting fac-
tors k;, j=1,2,3,4 which are some integrals from

weighting functionW(r) and approximation poly- Fig. 4. Stability diagram for tuning factors¢, k, :

@) (@ - . iy .
nom|aIL(k ),L(k+)1 These factors must be estimated by 1,... 5 — the upper boundaries of conditional stability

the application of the algorithm to some model prob for values Awp=1.0;1.25;1.60;1.80; 5. respectively;

lem, associated with the main problem. — eighth-order accuracy condition for testing pro

: D+l =0: - i -
Linear damping oscillatoru+2vu+w§u: 0 t>0 lem: k, + 15K +-gp=0; ///llll — domain of the abso

with the initial conditionsu(0) =1, u(0)= 0 can be
; i ; k=4 k,=1): B — (k=0,k,=3%); C —
used as a model problem for transient torsionatavib (k=27 Ks =79 (k=0,ky =7);
tion calculation.
k=1, k =-2p.
Applying the algorithm to the model problem we

would take into account the accuracy conditions for The accuracy and stability conditions in equati) (
can be displayed on the algorithm stability diagram

lute stability; the specific points on the diagram:—



for the testing problem, Fig. 4. This diagram ma&y b For both elements the maximal torsional vibration
used to specify two free weighting factoksk, in  Stress 8.5-16.8 MPa arise within speed interval 60-
4 rpm. Vibration stress component of order 6 preivail

the solution of the actual problem. For exampléim the synthesis stress.

first approach the vaIuesx=211,k4 :118 can be

adopted in the calculations. e =

as / “ o
3. CALCULATION SAMPLE s

- / el = ot

C Order 12
Calculation algorithm is intended to be implemented £ .:
. . g 6 oo
in ShaftDesigner software [12] as a separate modules - Y
for transient ice impact torsional vibration an#ys
Currently this module does not take into accouaftsh - ]
speed drop due to the ice impacts. Some calculatiol  zs}——"" —
results for IACS polar class PC1 vessel, equippec ef=——as = -
with low speed installation are discussed below. L s s s o e B

5 30 35 40 45 50 S5 60 SEEDZHM‘TREPMBH 85 90 95 100 105 110 115 120 125
a° i g 8 F 0 & 0%0% & & § R 2 Fig. 7: Steady vibration stress in the throw 6
b 55,2§§91,7?6279,5;&m,:;ﬂsm,ﬁTsﬁ,ﬁ‘553,; 623; 605,69 | 626,17 | 618,05 745,5’3 .}2}'%)
? E %Jg 111 % The transient vibration stress during ice millirgy i

? T T T T A much higher: 165-348 MPa for the propeller shaft

(Fig. 8) and 51-96 MPa for the throw 6 (Fig. 9).

Fig. 5: Mass-elastic system for low speed installation

Main characteristics of the propulsion installatine =
as the following: o T 0 T O W -
Engine stroke 2 i:ﬁ
Cylinder number 6 7 S S 6 O
MCR 5000 kwt i
Rated speed 109 rpm i e O et ot ot o S
Propeller type FPP b
Blade number 4 .
Propeller shaft diameters 410/130 ®
Steady vibration stress in the propeller shaft and A N R R

Speed, RPM

the throw 6 (aftermost cylinder marked as lumped
mass 8) for open water operation condition are show

! ) A Fig. 8: Transient vibration stress in the propeller
in the Fig. 6 and Fig 7.
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Fig. 6: Steady vibration stress in the propeller shaft Fig. 9: Transient vibration stress in the throw 6



Maximum torsional stress due to the ice impacts, inin the Fig. 10-13 transient torsional vibration [ga

contradistinction to open water condition, ariséhi

are shown. As can be seen ice impact torsionadsstre

the speed interval 95-100 rpm. It is exactly thmesa decay very fast after ice torque becomes equaéto z

interval where the first-blade order resonanceois |
cated (see order 4 curve in the Fig. 6). Clasgifioa

societies recommend analyse torsional vibration due =
to the ice impacts at this location first of all.
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. 10: Transient vibration propeller shaft stress at
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Fig. 13: Transient vibration stress in the throw 6 at
100 rpm

CONCLUSIONS

Proposed algorithm was programmed and included to
ShaftDesigner CAE package as a separate module for
transient torsional vibration calculation. Applicats

of this module demonstrate quite acceptable calcula
tion time for full mass-elastic system. Hence no-si
plification of mass-elastic system is required atcua-

late transient torsional vibration in ice operatoan-
ditions.

As a first stage of algorithm implementation shaft
speed drop was not taken into account. Such option
gives the possibility for the fast evaluation ofsion-

al vibration stress because it does not require of
whole propulsion shafting system modelling. It is a
decisive argument at the early stage of propulsion
shafting design. In addition using this option we a
on the safe side. It means that if the calculatad p
rameters satisfy the acceptance criteria, mordlddta
calculation may not be required at all.

The option for the whole propulsion system model-
ling is under testing now. It will be useful whemet
fast modelling results do not satisfy acceptande-cr
ria or real propulsion system parameters are efint
est. In the last case the realistic not statutoeytor-
ques are desirable to have as an input.
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