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ABSTRACT 
 
Calculation of transient torsional vibration induced by ice block impacts on the propeller blades is mandatory 
since January 2011 when new Classification Societies Rules for the ships navigating in ice came into force. The 
calculation complexity of shaft torsional vibration in this case consists not only in inevitable time-domain ap-
proach application but mostly in simulation of dynamic propulsion system response as a whole, taking into ac-
count shafting speed drop during impacts, diesel engine governor and turbocharger reaction for diesel engine 
installations. Calculation time for the real propulsion trains grows considerably. As a way out Classification 
Societies strongly advice to reduce actual mass-elastic systems to several mass using special technique. This 
paper is concerned with an effective method for calculation of transient torsional vibration of the propulsion 
system induced by ice block impacts that does not require mass-elastic system simplification. Special time-
domain integration of the linear matrix equations of propulsion shafting transient torsional vibration is pro-
posed. Calculation module based on this technique has been implemented in ShaftDesigner CAE package.  
 
 
INTRODUCTION 
 
Propeller of a ship navigating in ice is continually 
subjected to ice impacts that, among other problems, 
results in a severe shafting vibration. However the 
international economy and exploitation of natural 
resources of Northern areas requires elongating of 
shipping period in Baltic Sea and in Arctic region. 
That is the reason why numerous investigation pro-
jects were undertaken in the Northern countries last 
decades. As a result of long-term efforts of interna-
tional research group new Rules for the ships navi-
gating in ice came into force in January 2011. 
 
Among other requirements the updated Rules for the 
ice and polar class ships require calculation of transi-
ent torsional vibration, caused by ice impacts on the 
propeller blades. 
 
Conventional propulsion shafting forced torsional 
vibration calculations (TVC) have no computational 
problems because owing to the harmonic excitation 
law the frequency-domain approach can be easily 
used.  
 
In the transient vibration calculation time-domain 
approach should be used because of the arbitrary ex-
citation law.  
 

The time-domain approach for torsional vibration 
calculation of real propulsion trains is time consum-
ing considerably. As a way out the Classification So-
cieties, for example DNV [1], recommend to simplify 
the conventional mass-elastic systems, used in forced 
torsional vibration calculations, to several mass. Spe-
cial technique is to be applied for simplification of 
the mass-elastic system. This technique is not trivial 
and requires some experience from the user and 
moreover it not be easily applied in the case of non-
linear elements. 
 
The nature of propeller and ice block interaction re-
quires simulating of the propulsion system dynamic 
response as a whole, taking into account shafting 
speed drop, governor and turbocharger reaction for 
diesel engine installations. 
 
This paper is concerned with formulation of govern-
ing equations of propulsion shafting transient torsion-
al vibration caused by ice impacts on the propeller 
blades and development of an effective method for 
the time-domain integration of the equations that 
gives the possibility to avoid the procedure of mass-
elastic system simplification and takes into account 
propulsion system response during ice milling pro-
cess. 
 
 



1. GOVERNING EQUATIONS  
 
Typical directly driven propulsion system equipped 
with controllable pitch propeller (CPP) (Fig. 1) con-
sists of: 
− diesel engine; 
− propulsion shafting; 
− CPP; 
− oil distribution box, (ODB); 
− speed governor; 
− exhaust gas receiver; 
− turbocharger; 
− combustion air receiver; 
− load governor; 
− engine control system. 
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Fig. 1:  Propulsion system principal scheme  
 
Mechanical part of the propulsion system in torsional 
vibration calculation (TVC) is to be modeled as a 
commonly known N-degree mass-elastic system: the 
system consisting of lumped masses having specific 
inertia, connected by the massless stiffness elements.  
 
Motion of the lumped mass k of the system is de-
scribed by the equation [2]: 
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where 

kϕ  – rotation angle; 
kk ϕ=ω &  – angular veloci-

ty; 
kJ  – constant part of the lumped mass inertia; 

)(ϕ∆ kJ – variable part of the lumped mass inertia; 

∑ kM – sum of the torques, applied to the lumped 

mass. 
 
According to [2] equation (1) can be rewritten as:  
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The variable inertia component )(θ∆ kJ  inherited 

mainly to the cylinder lumped mass and the CPP 

lumped mass. These arise due to the piston and 
conrod center-of-mass positions changing with re-
spect to the crankshaft axis and due to changing of 
propeller added inertia during pitch adjusting. See 
articles [3,4], [5] for appropriate calculation formulas. 
 
Seven categories of the torques contribute to the 
sum∑ kM : 

– , ,W J P
k k kM M M - weight, inertia and gas excita-

tion torques are applied to the cylinder 
lumped masses; 

– ,H I
k kM M - hydrodynamic excitation and ice 

impact torques are applied to the propeller 
lumped mass; 

– D
kM - absolute damping torque is applied 

mainly to the cylinder and propeller lumped 
masses; 

– E
kM - elastic torque produced by the stiffness 

elements is applied to all lumped masses. 
 

TVC for open water operation condition when no ice 
torque is applied usually performed in a frequency 
domain as steady-state oscillations because shaft rota-
tion speed assumed to be constant as well as the rest 
propulsion system parameters.  Mean torque devel-
oped by the engine is in equilibrium with the mean 
hydrodynamic torque, applied to the propeller. 
 

 
 

Fig. 2:  Ice torque graphs for 4-blades propeller 
 
In ice conditions the torques balance is disturbed by 
ice impacts. The ice impact torques IkM  in the Clas-

sification Rules are described as the sequences of 
half-sinus waves of blade passing frequency as well 
as the double frequency. Ice torque graphs for 4-



blades propeller at the constant propeller speed are 
shown in the Fig 2. 
 
Torque amplitude Qmax depends on ship class, propel-
ler and hub diameters and propeller speed.  
 
In the case of ice impacts propeller load changes ab-
ruptly that initiate variation of propulsion system pa-
rameters. First of all shaft actual speed n  drops and 
the speed governor increases the components of the 

fuel supply vector b
r

sequentially to maintain required 
speed. Where, in spite of maximum fuel supply, the 

required speed zn  is not reached, load governor de-

creases the propeller pitch to decrease ship speed and 
use the engine energy to overcame ice resistance.  
As a result of the fuel supply alteration exhaust gases 
parameters will alter the combustion air parameters. 
In total these changes will alter indicating pressure 
diagram and gas toque component at the cylinder 
lumped masses [6]: 
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where *(φ , , , )k S S kP P T b – cylinder pressure; *

SP – air 

receiver pressure; 
ST – air receiver temperature; 

k
b  – 

fuel supply vector component in cylinderk ; F – cyl-
inder area; r  – crank radius; α

k
– conrod angle. 

 
For the propulsion shafting transient torsional vibra-
tion calculation induced by ice impacts the conven-
tional TVC differential equation system must be ex-
panded with the differential equations for turbo-
charger rotor (4), turbine receiver (5)-(7) and com-
pressor receiver (8): 
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where tcn – turbocharger rotor speed,  trm – mass of 
gas in turbine receiver, trL – gas amount in turbine 
receiver in moles, 

*
trT ,

*
trP – turbine receiver inhibited 

flow temperature and pressure,crm – mass of air in 
compressor receiver; ,τ τtc tr – time constants of 
compressor and turbine receivers; 

, , , ,tc mtr L T tcrf f f f f – the right-hand sides  functions of 
the equations [6].  
 

Suitable fuel supply 
k

b  depends on the normalized 

torque value /µ
P

k MCRD M M= ∑  defined by  the speed 

governor algorithm: 
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where ∆ – speed control range, 
Z

n – target speed:  
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Z
n – required engine speed.  

 
Governor PID algorithm is not effective for low 
speed installations and does not used here. 
 
 
2. NUMERICAL TECHNIQUE 
 
The choice of the numerical technique for the time-
domain solution of the k+5 differential equations de-
scribed above is a key factor for the successful prob-
lem solving. According to the fundamental publica-
tion [7] the majority of the numerical algorithms may 
be collected into the three families – multistage tech-
niques, multistep techniques and optimization tech-
niques. 
 
The disadvantage of the multistage techniques 
(Runge-Cutta method, Newmark β-method) is that 
some amount of the additional iterative calculations 

for every temporal point 1kt +  has to be carried out to 

achieve required accuracy. 
 
The well-known family of the “predictor-corrector” 
algorithms (Adams-Multon method) belongs to the 
multistep techniques. The disadvantage of the multi-
step techniques is that the algorithms could start only 

from some temporal point 1, 1st s+ >  but not from the 

initial point 0t , therefore some other algorithm has to 

be used at the beginning for the calculations on the 

initial interval 0[ ; ]t ts . 

 
The third family of the optimization techniques is 
based on the optimization procedures applied to the 

specified functional ( , , )J θ θ θ
r rr
& && , connected to the con-

sidered problem. If { }pn  are the set of free unknown 

parameters in the solution, then the conditions 

0J pn∂ ∂ =  generate the resulting equations in the 

algorithm. Different versions of the well-known least-
square algorithms are the good representatives of this 
family [9]. One of them is Kujawski&Gallager meth-



od [10], according to which the minimization proce-

dure is formulated as 1 0kJ +∂ ∂ θ =
r

 where functional 

J has to be considered as a square of the total errors 

of equations for the temporal interval 1 1[ ; ]k kt t− + . 

 
To solve the problem of transient torsional vibration 
problem the Kujawski&Gallager algorithm was spe-
cially generalized [11] to be applied to the complete 
mechanical form of the governing equations with 
nonlinearities in matrix elements: 
 

                    C ( )T tΜθ + θ + Κθ =
r r r r
&& & ,                         (11) 

 
where matrices ,C,Μ Κ  are considered as the equiva-

lent inertia, damping and rigidity matrices of the vi-

bration system respectively and ( )T t
r

 is a vector of 

generalized excitation forces. For the transient and 
nonlinear problems some elements of the above men-
tioned matrices would include dependences of the 

matrix elements on time, displacement vector θ
r

 and 

velocity vectorθ
r
& . In this case loading vector may 

have the same structure too( , , )T t θ θ
rrr
& . 

The mechanical form of the equation makes the gen-
eralised Kujawski&Gallager method most suitable for 
use together with the finite element method of pro-
pulsion shafting modelling [8].  
 
To evaluate the above mentioned techniques four 
typical algorithms – fourth-order Runge-Cutta algo-
rithm, four-step Adams-Multon algorithm, Newmark 
β-method and generalized version of 
Kujawski&Gallager algorithm have been chosen to 
solve the following differential equations:  
1) linear dumping oscillator,  
2) nonlinear Duffing’s oscillator and  
3) Van-der-Pol’s oscillator with nonlinear damping. 
Calculations were carried both for free oscillations 
and for harmonically exited oscillations.  
 
Calculation results brought us to the following con-
clusion: every of chosen algorithm works correctly 
for some of the equations and indicates amplitude 
instability or phase shifting for the rest of the equa-
tions. Generalized Kujawski&Gallager optimization 
algorithm in general showed better characteristics in 
the comparison to other algorithms.  
 
Hereinafter generalized Kujawski&Gallager algo-
rithm [8,11] is discussed in more details. 
 
At the initial stage of the algorithm, for the constant 
temporal step t const∆ =  the second-order polynomi-
al approximation of the solution is applied on the 

temporal interval 1 1[ ; ]k kt t− +  (see Fig. 3): 
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right-hand side of the equations.  

 

Fig. 3: Approximation of the solution on the temporal 

interval 1 1[ ; ]k kt t− + ; I – known portion of the solution, 

II – unknown portion of the solution. 
 
Approximation generates some errors in the solution 
or so called “residual forces” in the matrix equations 
(11) 
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Then, at the second stage of the algorithm [8,11], the 
functional related to the problem can be formulated as 
the following: 
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where ( )W τ  is some weighting function on the con-

sidered temporal interval having the properties 

( ) ( ) ( ) ( )1 1, , 01W d W W Wτ τ = −τ = τ τ >∫−  and 
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is the vector of residual forces. This vector includes 

additional weighting factors ( )1 0; ;1w diag −= α α%  and 

estimating of the matrixes ,C,Μ Κ  in some specified 

point of collocation 1 1[ ; ]c k kt t t t− += ∈  (in the case of 

nonlinear or time-depending elements of matrixes in 

the equations). Weighting function( )W t , point of 

collocation ct  and weighting factors w%  have to be 

chosen on the next stages of the algorithm. 
 



At the third stage, the algorithm considers 1,k k−Θ Θ
r r

 

as known values; for the unknown value 1k+Θ
r

 we 

would formulate minimization procedure as the fol-
lowing: 
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which finally results in the numerical algorithm: 
 

( )
( ) ( )

1 1 11

1 1 1

1 1
2 2

2 1 1
2 ,

k k kk

k k k k

A B A D

t A E T T A GT HT

+ + +−

+ − −

− −Θ = Θ − Ι − Θ +

− −+∆ + − + 
 

r r r

r r r r

    (16) 

 

where 1, 2, 3, ....k =  and for the first temporal point 1t  

it modifies to the equation: 
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where 0 0,θ θ
rr
&  are the initial values of the problem 

solution. 
 
The following expressions for the matrices A, B, D, 
E, G, H are used: 
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The algorithm includes four unknown weighting fac-

tors , 1, 2, 3,4jk j =  which are some integrals from 

weighting function ( )W τ  and approximation poly-

nomial (2) (2)
1,k kL L + . These factors must be estimated by 

the application of the algorithm to some model prob-
lem, associated with the main problem. 
 

Linear damping oscillator 2
02 0 , 0u u u t+ ν + ω = >&& &  

with the initial conditions (0) 1, (0) 0u u= =&  can be 

used as a model problem for transient torsional vibra-
tion calculation. 
 
Applying the algorithm to the model problem we 
would take into account the accuracy conditions for 

the first temporal point 1t  and stability conditions at 

the infinity tn → ∞ . Application of these conditions 

generates finally the following results for the 

weighting factors , 1, 2, 3,4k jj =  [11]: relations be-

tween the factors 
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accuracy and stability conditions for two free tuning 

factors 4, kκ  
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where , 0, , 4j jχ = K  are some correction factors re-

lated to the damping effects in the model problem and 
2 2 2 2

0( )* t v∆ω = ∆ ω − . 

 
 

Fig. 4: Stability diagram for tuning factors 4, kκ : 

1, , 5K  – the upper boundaries of conditional stability 

for values 1.0; 1.25; 1.60; 1.80; 5.0∆ω =∗  respectively; 

6 – eighth-order accuracy condition for testing prob-

lem: 4
5 7 012 180k + κ + = ; /////// – domain of the abso-

lute stability; the specific points on the diagram: A – 

4
1 1( , )24 48kκ = = ; B – 4

1( 0 , )4kκ = = ; C – 

4
1 1( , )4 24kκ = = − . 

 
The accuracy and stability conditions in equation (20) 
can be displayed on the algorithm stability diagram 



for the testing problem, Fig. 4. This diagram may be 

used to specify two free weighting factors , 4kκ  in 

the solution of the actual problem. For example in the 

first approach the values 4
1 1,24 48kκ = =  can be 

adopted in the calculations. 
 
 
3.  CALCULATION SAMPLE  
 
Calculation algorithm is intended to be implemented 
in ShaftDesigner software [12] as a separate module 
for transient ice impact torsional vibration analysis. 
Currently this module does not take into account shaft 
speed drop due to the ice impacts. Some calculation 
results for IACS polar class PC1 vessel, equipped 
with low speed installation are discussed below.  
 

 
 
Fig. 5: Mass-elastic system for low speed installation 
 
Main characteristics of the propulsion installation are 
as the following: 
 
Engine stroke  2 
Cylinder number   6 
MCR      5000 kWt 
Rated speed   109 rpm 
Propeller type   FPP 
Blade number  4 
Propeller shaft diameters 410/130 
 
Steady vibration stress in the propeller shaft and in 
the throw 6 (aftermost cylinder marked as lumped 
mass 8) for open water operation condition are shown 
in the Fig. 6 and Fig 7. 
 

 
 

Fig. 6: Steady vibration stress in the propeller shaft  
 

For both elements the maximal torsional vibration 
stress 8.5-16.8 MPa arise within speed interval 60-75 
rpm. Vibration stress component of order 6 prevail in 
the synthesis stress. 
 

 
 

Fig. 7: Steady vibration stress in the throw 6  
 
The transient vibration stress during ice milling is 
much higher: 165-348 MPa for the propeller shaft 
(Fig. 8) and 51-96 MPa for the throw 6 (Fig. 9). 
 
 

 
 

Fig. 8: Transient vibration stress in the propeller 
shaft 

 

 
 

Fig. 9: Transient vibration stress in the throw 6 



Maximum torsional stress due to the ice impacts, in 
contradistinction to open water condition, arise within 
the speed interval 95-100 rpm. It is exactly the same 
interval where the first-blade order resonance is lo-
cated (see order 4 curve in the Fig. 6). Classification 
societies recommend analyse torsional vibration due 
to the ice impacts at this location first of all. 
 

  
 

Fig. 10: Transient vibration propeller shaft stress at 
68 rpm 

 

 
 

Fig. 11: Transient vibration propeller shaft stress at 
100 rpm 

 

 
 
Fig. 12: Transient vibration stress in the throw 6 at 

68 rpm 
 

In the Fig. 10-13 transient torsional vibration graphs 
are shown. As can be seen ice impact torsional stress 
decay very fast after ice torque becomes equal to ze-
ro. 
 

 
 

Fig. 13: Transient vibration  stress in the throw 6 at 
100 rpm 

 
 
CONCLUSIONS 
 
Proposed algorithm was programmed and included to 
ShaftDesigner CAE package as a separate module for 
transient torsional vibration calculation. Applications 
of this module demonstrate quite acceptable calcula-
tion time for full mass-elastic system. Hence no sim-
plification of mass-elastic system is required to calcu-
late transient torsional vibration in ice operating con-
ditions. 
 
As a first stage of algorithm implementation shaft 
speed drop was not taken into account. Such option 
gives the possibility for the fast evaluation of torsion-
al vibration stress because it does not require of 
whole propulsion shafting system modelling. It is a 
decisive argument at the early stage of propulsion 
shafting design. In addition using this option we are 
on the safe side. It means that if the calculated pa-
rameters satisfy the acceptance criteria, more detailed 
calculation may not be required at all. 
 
The option for the whole propulsion system model-
ling is under testing now. It will be useful when the 
fast modelling results do not satisfy acceptance crite-
ria or real propulsion system parameters are of inter-
est.  In the last case the realistic not statutory ice tor-
ques are desirable to have as an input. 
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