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Abstract 
Since analysis of shafting transient torsional vibrations caused by ice impacts 
became mandatory, numerous modelling-based calculations have been carried out 
for ships sailing under ice class. However, the calculation results still do not allow 
to obtain general conclusions from the shafting response in ice conditions. The main 
reasons for this could be summarized as follows. First of all, the different tools in use 
for the prediction of transient vibrations make the comparison of analysis results 
rather difficult. Secondly, some simplifications about the response of the propulsion 
system in ice conditions are to be made because the consideration and addressing 
of the complex nature of a propulsion system in practical design are impossible for 
many reasons. Thirdly, various underlying uncertainties in the input data put a shaft 
designer in a situation in which he needs to make a decision. This paper is an 
attempt to make some contributions to the presentation and analysis of the 
propulsion shafting torsional vibration induced by propeller-ice interaction. Two 
practical examples are considered: for a polar class ship with a direct coupled diesel 
engine and another one for the case of a geared propulsion unit. Some uncertainties 
in data setting concerning of the design torques are considered and assessed. 

INTRODUCTION 

Numerous calculation procedures were developed since 2011 when 
calculations of ice class ship propulsion shafting transient torsional vibrations 
caused by propeller-ice impacts became mandatory. Unfortunately detailed 
presentations of the analysis and issues of calculation are still not published. 
This paper is an attempt to make some contribution to fill the gap based on  
the experience gained with ShaftDesigner software [1].  

Various underlying uncertainties in the prediction of the ice induced peak 
torque and peak-to-peak torque (such as propeller speed drop during ice 
milling, added inertia of a propeller, propeller damping and others) hinder the 
adoption of design decisions. Lack of the comprehensive studies of these 
really complex issues in current situation forced to look for approximated 
influences of these uncertainties. 
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DATA SETTING ISSUES 

Inertia  

During the ice milling and crushing process the propeller vibrates in a mixture 
of water and ice. The external forces, proportional to propeller acceleration, 
are increasing significantly and can no longer be considered only as a 
conventional entrained water inertia. Nevertheless there is a recommendation 
to keep the propeller added inertia as for open-water operation [4] 

Damping  

Propeller damping characteristics in ice induced torsional vibration may 
change significantly due to blocked flow and/or cavitation effect. But the 
simplest viscous damping model is still used.  

Flexible couplings manufacturers usually provide damping parameters 
applicable to a frequency-domain analysis. The simplest recommendation in 
these circumstances is to set the damping using the major excitation 
frequency of the ice related excitation load [4].  

Stiffness 

Dynamic stiffness of the flexible couplings in most cases also is defined 
depending on excitation frequency. This is a challenge how to set it in the 
analysis of torsional vibration induced by propeller-ice interaction. 

Excitation  

Propeller ice loads are the result of a combination of several different 
phenomena of contact and non-contact nature. Contact propeller-ice 
interaction is related to the ice impact and ice milling. Non-contact propeller-
ice interaction is related to hydrodynamics defined by the blockage effects, 
proximity effects, and cavitation. 

The Class Rules [5] prescribe that propeller loads of the ice class ships 
must consist of two components: ice milling torque and open-water 
hydrodynamic torque. Such approach simplifies the analysis very much, and it 
would be great if this approach fully meets the needs of reliable shafting 
design. Currently this remains unknown. 

Furthermore the characteristics of transient torsional vibration caused by 
ice impacts may also depend on the initial state of the propulsion system at 
the moment immediately preceding to the first ice hit. 
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CASE STUDIES 

In order to analyze torsional vibrations caused by propeller-ice interaction, 
there is a need to answer several questions, which result from the physics of 
the phenomena but are not in the scope of regulatory documents: 
– how does the propeller inertia moment added during propeller-ice 

interaction affects the calculation results? 
– whether the accuracy of damping setting is important for transient 

torsional vibration of the propulsion shafting induced by ice impacts? 
– how to overcome the indeterminate engine speed drop? 
– is the initial phase of the milling process critical for shafting response? 

Next, the answers to these questions for projects Case-1, and Case-2 
Fig. 1, 2 are considered. For the property of the projects see Appendix. 

 

 
   

 
Fig. 1 -  Propulsion shafting and mass-elastic system of the ship Case-1  

 

 

Fig. 2 - Propulsion shafting and mass-elastic system the ship Case-2 
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the contrary, are increasing. With such a large assumed increase of added 
propeller inertia, the variations of the design parameters do not exceed 12 %. 

Propeller damping study 

Propeller damping is yet another uncertain input parameter the influence of 
which has been studied for both projects Case-1 and Case-2. It is 
recommended for open-water conditions to take Archer number from the 
range 25-35. For ice milling conditions, there is recommendation [4] to use 
the Archer number equal to 20. The dependence of the design parameters on 
the variation of Archer number relative to recommended value 20 is shown in 
the Table 3.  

Table 3 Influence of propeller damping variation in ice conditions 

 
Archer numb

20 
Peak  

torque 
Peak-peak- 

torque 
 

Peak  
torque  

Peak-peak- 
torque 

C
as

e-
1 

0,50 1,027 1,011 
C

as
e-

2 
1,024 1,034 

0,75 1,013 1,006 1,006 1,017 

1 1 1 1 1 

1,25 0,988 0,990 0,988 0,983 

1,5 0,977 0,984 0,978 0,967 

 
For both projects, the increase of propeller damping results in the design 

parameters decrease.  It means that propeller damping decreases torques. 
Deviations from the Archer number 20 in both directions may affect the 
design parameters not more than 5 %. DNV/GL recommendation leads to 
increasing of the design parameters and may be explained by the desire to 
get conservative, i.e. safer results in the uncertain conditions.  

Impact phase study 

The open-water alternating torques in shaft elements are in some phase 
before the first ice hit event happens.  Series of calculations with variation of 
the first hit event time were performed to study how the first hit phase affects 
the design parameters. Neglecting of the phase selection for the projects with 
significant open-water alternating torque may overestimate the design 
parameters value up to 12 %.  

SUMMARY 

Application of the parametric study to the design parameters, namely peak 
torque and peak-to-peak torque in ice induced torsional vibration led to the 
following conclusions: 
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- The response on propeller-ice interaction in a great extent depends on 
individual dynamic properties of the shafting. There are no universal 
recommendations and predictions. 

- During propeller-ice interaction the conventional (open-water) excitations 
can make a major contribution into design parameters, especially in 
resonance conditions, although in other cases the ice torque is a 
determining factor. 

- The speed drop and MIP rise, which express the engine response on the 
propeller-ice interaction, affects the design parameters of the propeller 
shaft of the projects under consideration up to 10 %. 

- Different projects may responses on the propeller ice added inertia 
differently increasing or decreasing propeller shaft design parameters. On 
the whole, changes not exceed 12 %. 

- DNV recommendation to set the Archer number in ice induced torsional 
vibration analysis to 20 is quite reasonable.  

- Wrong selection of the ice impact phase may lead to overestimation of the 
design parameters up to 12 % when open-water alternating torque is 
significant. 
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Appendix      

Properties Case-1 Case-2 

Engine type   
Engine stroke  
Cylinder number  
MCR,  kWt 
Rated speed, rpm  
Propeller type   
Propeller diameter, mm  
Blade number  
Propeller shaft diameters  

6RT-flex60C-B  
2 
6 

13200 
111 
CPP 
5700 

4 
860/480 

3512С HD (Caterpillar)  
(4, V-angle=60˚ 

12 
1174 
1800 
FPP 
1850 

5 
175/0 

   


